Assembly Basics
Structure / Sections
An assembly program can be divided into three sections −
- The data section
- The bss section
- The text section
The data Section
The data section is used for declaring initialized data or constants. This data does not change at runtime. You can declare various constant values, file names, or buffer size, etc., in this section.
The syntax for declaring data section is −
section.data
The bss Section
The bss section is used for declaring variables. The syntax for declaring bss section is −
section.bss
The text section
The text section is used for keeping the actual code. This section must begin with the declaration global _start, which tells the kernel where the program execution begins.
The syntax for declaring text section is −
section.text
global _start
_start:
Comments
Assembly language comment begins with a semicolon (;). It may contain any printable character including blank. It can appear on a line by itself, like −
; This program displays a message on screen
or, on the same line along with an instruction, like −
add eax, ebx ; adds ebx to eax
Assembly Language Statements
Assembly language programs consist of three types of statements −
- Executable instructions or instructions,
- Assembler directives or pseudo-ops, and
- Macros.
The executable instructions or simply instructions tell the processor what to do. Each instruction consists of an operation code (opcode). Each executable instruction generates one machine language instruction.
The assembler directives or pseudo-ops tell the assembler about the various aspects of the assembly process. These are non-executable and do not generate machine language instructions.
Macros are basically a text substitution mechanism.
Syntax of Assembly Language Statements
Assembly language statements are entered one statement per line. Each statement follows the following format −
[ label ] mnemonic [ operands ] [ ;comment ]
The fields in the square brackets are optional. A basic instruction has two parts, the first one is the name of the instruction (or the mnemonic), which is to be executed, and the second are the operands or the parameters of the command.
Following are some examples of typical assembly language statements −
INC COUNT ; Increment the memory variable COUNT
MOV TOTAL, 48 ; Transfer the value 48 in the
; memory variable TOTAL
ADD AH, BH ; Add the content of the
; BH register into the AH register
AND MASK1, 128 ; Perform AND operation on the
; variable MASK1 and 128
ADD MARKS, 10 ; Add 10 to the variable MARKS
MOV AL, 10 ; Transfer the value 10 to the AL register
The Hello World Program in Assembly
The following assembly language code displays the string ‘Hello World’ on the screen −
section .text
global _start ;must be declared for linker (ld)
_start: ;tells linker entry point
mov edx,len ;message length
mov ecx,msg ;message to write
mov ebx,1 ;file descriptor (stdout)
mov eax,4 ;system call number (sys_write)
int 0x80 ;call kernel
mov eax,1 ;system call number (sys_exit)
int 0x80 ;call kernel
section .data
msg db 'Hello, world!', 0xa ;string to be printed
len equ $ - msg ;length of the string
When the above code is compiled and executed, it produces the following result −
Hello, world!
The code is in replit.com at https://replit.com/@andyguest/assemblyHelloWorld
Memory Segments
We can replace the keyword section
with the keyword segment
and the code will still run.
Live Demo
segment .text ;code segment
global _start ;must be declared for linker
_start: ;tell linker entry point
mov edx,len ;message length
mov ecx,msg ;message to write
mov ebx,1 ;file descriptor (stdout)
mov eax,4 ;system call number (sys_write)
int 0x80 ;call kernel
mov eax,1 ;system call number (sys_exit)
int 0x80 ;call kernel
segment .data ;data segment
msg db 'Hello, world!',0xa ;our dear string
len equ $ - msg ;length of our dear string
A segmented memory model divides the system memory into groups of independent segments referenced by pointers located in the segment registers. Each segment is used to contain a specific type of data. One segment is used to contain instruction codes, another segment stores the data elements, and a third segment keeps the program stack.
In the light of the above discussion, we can specify various memory segments as −
-
Data segment − It is represented by .data section and the .bss. The .data section is used to declare the memory region, where data elements are stored for the program. This section cannot be expanded after the data elements are declared, and it remains static throughout the program.
The .bss section is also a static memory section that contains buffers for data to be declared later in the program. This buffer memory is zero-filled.
-
Code segment − It is represented by .text section. This defines an area in memory that stores the instruction codes. This is also a fixed area.
-
Stack − This segment contains data values passed to functions and procedures within the program. This is both a stack and The Stack.
- Previous
- Next